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Republic of Germany 

Received 27 August 1980, in final form 6 October 1980 

Abstract. Application is made of two different generalised fluctuation-dissipation 
theorems and their derivations to the calculation of the gravitational quadrupole radiation 
resistance using the radiation-reaction force given by Misner, Thorne and Wheeler and the 
usual tidal force on one hand and the tidal force and the free gravitational radiation field on 
the other hand. The quantum-mechanical version (including thermal generalisations) of the 
well known classical quadrupole radiation damping formula is obtained as a function of the 
radiation resistance. 

1. Introduction 

Following the derivation of the famous classical quadrupole formula for gravitational 
radiation with the help of a radiation-reaction force.(obtained by matched asymptotic 
expansion and therefore often criticisedt) by Misner et a1 (1973) and the corresponding 
quantum-mechanical formula derived by Schafer and Dehnen (1980a, b) using the ratio 
of the Einstein coefficients for spontaneous emission and absorption together with a 
calculation of the absorption and a path integral approach, respectively, it is interesting 
to compare these approaches to the gravitational radiation damping problem more 
closely than only from their identity with respect to the correspondence principle 
applied to the radiation formulae as done by Schafer and Dehnen (1980a, b). This is a 
much more interesting problem as the two damping mechanisms seem to be completely 
different: one uses the radiation-reaction force (caused by self-coupling), the other the 
influence of the vacuum fluctuations of the gravitational wave field. 

To achieve our aim, we want in particular to make use of two beautiful papers, both 
of which give generalised fluctuation-dissipation theorems: one by Callen and Welton 
(1951) and the other by Feynman and Vernon (1963). The crucial points concerning 
these fluctuation-dissipation theorems are that, in deriving both, classical and quan- 
tum-mechanical equations are involved, the classical limit can be performed immedi- 
ately, and they are dual to one another in some sense. As we shall see, in our case the 
difference between the fluctuation-dissipation theorems is a purely conceptual one. In 
the formalism of Callen and Welton (1951) the fluctuations of, say, the gravitational 
field potential in an isolated quantised matter system are related to the dissipative part 
of the impedance of the isolated system (at thermal equilibrium), which is determined 
by the radiation-reaction force and the linear gravitational wave coupling (tidal force), 

t See § V of the recent review paper by Thorne (1980). 
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whereas in the formalism of Feynman and Vernon (1963) the fluctuations of the 
gravitational field potential in an unisolated quantum-mechanical system are related to 
the dissipative part of the impedance for the linear coupling (tidal force) of free 
gravitational waves (quantised and at thermal equilibrium) to the system. As they 
should, both formulae turn out to be identicalt and show most clearly the essential 
identity of the two damping mechanisms mentioned above together with the correct- 
ness of the classical radiation-reaction force for calculating resistances. 

In our choice for the model of the matter system we will restrict ourselves for 
simplicity to the classical and quantum-mechanical vibrators already treated in detail by 
Misner et a1 (1973) and Schafer and Dehnen (1980a) respectively. 

2. Application of the theory of Callen and Welton 

First we give a brief outline of the main features of the theory of Callen and Welton. 
We take as the Hamiltonian 

H=Ho(x ,p) -  V(t )Q(x ,p)  (2.1) 

where Ho is the unperturbed Hamiltonian of the matter system which is assumed to be 
bounded from below with densely distributed eigenvalues (dissipative system), Q is a 
function of the coordinates and momenta of the matter system and V is a time- 
dependent (we choose a periodic time dependence with period w )  potential or force 
function which measures the instantaneous magnitude of the perturbation. Then, if the 
quantum-mechanical system is left in thermal equilibrium with no applied force, for the 
fluctuations of the hypothetical operator V, = Z ( w ) Q ,  (its definition is given in terms 
of Fourier transforms) the following holds (cf also Bernard and Callen 1959): 

3 r m  
( V ( t )  V( t  + 7)) = 5 J R ( w ) E ( w ,  p )  COS W T  dw (2.2) 

T o  
where 

with temperature p- l  and R ( w )  is a resistance, the real or dissipative part of the 
impedance Z ( w ) .  Z ( w )  is defined by the classical relation ( Q  is to be taken here as a 
c-number and written, together with V from (2.1), in standard complex notation) 

E ( w ,  p )  = $hw coth ihpw = i hw  + hw/(exp(hpw) - 1) 

v = Z ( w ) Q ,  (2.3) 

valid for linear systems (notice the linearity of V of our perturbation term in equation 
(2.1)). 

The classical limit ( p  + 0) of equation (2.2) simply reads 

( V ( t ) V ( t + ~ ) ) = ~ p - '  lom R ( w )  COS W T  dw. 
?r 

(2.4) 

Considering equation (2.2), it is worthwhile pointing out a very interesting property: 
although the function V in (2.1) is a purely classical one, its fluctuations, because of 
E(@, p) ,  are uniquely quantum mechanical in origin and evidently arise from the 
quantised matter system. Next we turn to the application. 

t The existence of temperature and the internal consistency of quantum mechanics demand this as a sort of 
compatibility condition. 



Gravitational radiation resistance 679 

As shown in the paper by Schafer and Dehnen (1980a), the Hamiltonian of a bound 
matter system interacting with gravitational waves on the quadrupole approximation 
level can be written as 

H = Ho(x, p)+$c2RiOiO(t)Qii (2.5) 
where Ho is again the unperturbed Hamiltonian, Rioio are the non-zero components 
(modulo symmetry properties) of the trace-free curvature tensor for the gravitational 
wave field and Q" is the mass-quadrupole tensor of the matter system which is defined 
by 

( p  is the mass density, i, j = 1 ,2 ,3 ,  c is the velocity of light). The perturbation term in 
equation (2.5) results from the tidal forces. 

For our matter model (vibrator) we choose the following datat: two equal point 
masses with reduced mass p, rest distance of the two masses 2L, eigenfrequency wo, 
fixed unit vector in the mass-mass direction n ', relative coordinate (momentum) of the 
two masses x ( p ) .  Then, applied to our vibrator, equation (2.5) reads 

(2.7) 
Comparing equation (2.7) with equation (2.1) we make the identifications V =  
-c2RiOiOnin' and Q = ;px2$. Then, with equation (2.2) we get (from now on we choose 

H = (p2/2p)+ipwE(x - 2 L ) 2 + ~ 2 R i O i O n i n i ~ p x  2 . 

r=O) 
m 

((c2Rioj0nini)2) =z  I R(w)E(w, p )  dw. 
T o  

For the determination of R ( w )  we proceed as follows. The equation of motion 
corresponding to the Hamiltonian (2.7) has the form 

x +ut (x - 2L) = -c2R ioion 'nix (2.9) 

(a dot means derivative with respect to the time t). We must add to the right-hand side 
of this equation the radiation-reaction acceleration given by Misner et a1 (1973) 

2 G d5Qii . . 4 G d5x2 
15 c 5 (  dt5 ) 15 c dts 

--- - Xn'nJ -- Tpx- 

where the vibrator data are already inserted. This results in 

2 4 G d5x2 2 2+w0(x-2L)+-  ~ p x ~ = - c  Rioion'nix. 
15 c dt 

(2.10) 

(2.11) 

After performing the transformation x = 2L(1+ 5 )  and paying attention to [<< 1 we get 
from equation (2.11) the equation of motion 

(2.12) 

t The centre-of-mass data can be neglected. 
$The reader may wonder about the densely distributed energy eigenvalues of our vibrator. This will 
effectively be achieved by the damping term (2.10) (see, e.g., Feynman and Hibbs 1965, pages 149 ff and page 
161). 
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Now we make the ansatz 6 = to e-'"' (R  
from equation (2.12) 

oscillates with frequency w !) and obtain 

(2.13) 

With d(&x2)/dt = 4pL24 = -i4pL2w5 and with respect to equation (2.3) and the 
substitution for Q defined above, equation (2.13) gives for the resistance R ( w )  

(2.14) 8 G 4  R ( w ) = - - w .  15 c 

If we insert expression (2.14) into equation (2.8) we obtain the result 

((c2RiOjOnin')2) = (2.15) 

or, after taking the average (see, e.g., equations (4.7) and (4.11) of Schafer and Dehnen 
(1980a)) over all directions and polarisation states of the wave field (represented here 
by R io io) ,  

(2.16) 

In the transverse traceless gauge of the radiation field hii the relation between R ioio and 
hij reads c 2 R i o j o  = -$&ij  and between the energy density U of the radiation field and 
hij, U = (c2/32~G)(hiih"). Taking into account these relations, it follows from equation 
(2.16) that 

.. 32 G O0 

(hijh") = - 7 I E ( w ,  p )  dw 
T C  0 

and 

1 

T C  
U = 23 Io w2E(w,  p )  dw. 

(2.17) 

(2.18) 

With regard to the definition of E ( w ,  p), the expression (2.18) is the well known Planck 
formula together with the zero-point contribution. This was to be expected because 
photons and gravitons have the same number of polarisation states. 

3. Application of the theory of Feynman and Vernon 

As in § 2, we want first to give a brief outline of the theory as far as we are concerned 
with it. 

Let the total Lagrangian L be of the form 

where Lo is the unperturbed Lagrangian for the matter system, L, is the Lagrangian of 
the dissipative system for which we choose a free external radiation field (densely 
distributed energy eigenvalues!) and qQ describes the q-linear coupling between both 
systems whereby Q is a function of the coordinates and velocities of the matter system. 
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at 
t = 7 = 0 to q,,,(xT) at t = T can be written (cf also Feynman and Hibbs 1965, ch 12) 

P n m  = q Z ( x T ) q m ( X k )  exp(+(x) - So(x'))) F(Q, Q') 

Then the probability that the matter system makes a transition from a state 

i 

X'P:(x:)'Pn(xr)Dx(t)Dx'(t) dx, dx: dXT dxb (3.2) 

where So(x) = ~:Lo(x ,  i )  dt is the action corresponding to LO, F(Q,  Q') is the influence 
functional which incorporates all effects of the external influences on Q and I D .  . . 
means functional integration. The influence functional has the form 

I 

F(Q, Q') = exp(i4 (a, a')) ( 3 . 3 ~  

with the influence phase 4 (a, Q') given by 

If the q-system modes are thermally distributed, then 

F ( t )  = +2 
W 

Re(wZ,)-'[l+2(exp(phw)- l)-'] cos u t  d o  
T O  

0 ,.a 

+ L i  J Re(wZ,)-'sin ut dw 
T o  

(3.4) 

where 2, is a classical impedance function which relates the reaction of q to the applied 
force Q according to t  

2, = -Q,/iwq,. (3.5) 

The definitions are 
W a 

q, = Io q ( t )  e+'"'dt and 

For the determination of 2, the classical equation of motion which follows from the 
Lagrangian (3.1) 

Q, = I Q(t)  e+""'dt. 
0 

has to be solved under the initial conditions at t = T = 0: q(0) = 4(0)  = 0. If we take, for 
example, 

Ldq, 4)=Im(42-W:q2), ( 3 . 6 ~ )  

then we obtain as the equation of motion 

m ( i + & q ) = Q  (3.6b) 

with the solution 

( 3 . 6 ~ )  

t Because of reciprocity relations, the impedance Z, is linked, of course, with the impedance Z ( w )  defined by 
(2.3). 
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or, in terms of Fourier transforms, 

(3.6d) 

The correlation function for q, ( q ( t ) q ( t + s ) ) ,  is related to F ( t )  according to? 

( q ( t ) q ( t + s ) )  =+t i  Re F(s) .  (3.7) 

In second-order approximation with respect to the potential q in the coupling term 
of equation (3.1), Pnm from equation (3.2) reads 

(spontaneous and induced decay) 

(spontaneous and induced emission) 

( 3 . 8 ~ )  

(3.86) 

( 3 . 8 ~ )  

(absorption) where the definitions honk = E,, - E k  (E, is the energy eigenvalue of the 
state z~r,) and Qnk = I  V;(x)QTk(x) dx are used. 

At this point we want to make a short digression to the thermal matter of § 2 to show 
a consistency with the thermal radiation calculations of this section. As can be inferred, 
e.g. from the book by Weinberg (1972), a relative probability for spontaneous and 
induced emission of radiation from thermal matter with temperature p'-l can be 
written with, say, our Pam as 

pnm = prim e-hp'wn, ( w n m  > 0 )  (3.8 b I )  

and, correspondingly, for absorption 

P m n  = P m n  (W" 0) .  (3.8 c I )  

In the case of thermal equilibrium between matter and radiation we must have, of 
course, pnm =pmn.  From this, using equations (3.8b), (3.8c), (3.8b') and (3.8c'), it 
follows that p = p', thus proving the consistency. 

Now we will apply the stated formalism. The Lagrangian corresponding to the 
Hamiltonian (2.5) has the form 

L=Lo(x ,  i)-&c2RiOjo(t)Qii. (3.9) 
Using the gauge degree of freedom of adding a total time derivative to a Lagrangian, an 
equivalent Lagrangian to (3.9) is (cf Schafer and Dehnen 1980a) 

L = Lo(x, i )+&hi j ( t )Qi i  (3.10) 

(h ,  is again given in the transverse traceless gauge). With the Lagrangian of the free 

i. To be precise, Feynman and Vernon use here the thermal part of F only. 
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gravitational radiation field (cf, e.g., Schafer and Dehnen 1980b) 

(3.11) 

( p  = 0 ,  1 , 2 ,  3 ;  metric signature + 2; x o  = c t )  our total Lagrangian, corresponding to 
equation (3.1),  can be written as 

L=Lo(x,X)-- c 4  [ hiiiwhii’w d3x +&hij(t)Qi’. 
6 4 r G  

(3.12) 

The second time derivatives in equation (3.12) do not cause trouble with respect to 
equation (3.1) because in our approximation the time derivatives are generated by Ho 
(corresponding to Lo) so that Qi’ is effectively a function of the coordinates and 
velocities alone. Now we decompose the radiation field into normal modes q$f’ with 
q(-k) - q(k)  (--I)~-’, q$f) real, and i = I ,  2 ;  a 1  = I ,  a 2  = 3 for a = I ,  and a 1 = 2 ,  a 2  = 4 
for a = 2:  

(a i )  - (a i )  

(3.13) 

where el;’ are real polarisation tensors having the properties 
(a) - (a) e i j  - e j i  . e ( a ) i i  (0) = s a 0  0 e i j  ei;’k’ = 0 e;a) ‘  = 

Inserting (3.13) into (3.12) results in 

+ e ! ~ ) Q i i ( q ~ i ~ )  cos(kxo) +q$f )  sin(kxo)). (3.14) 

In the last term we have made use of the quadrupole approximation, kx = kxo (xo is the 
position of the centre of mass of the matter system). 

Applied to our vibrator, we get 

ei;’Q’’ .. . . = e$)nini7(3px d2 2 ) d t  

and together with the Lagrangian (3.14) after conveniently changing the variables q:$) 
according to 

with 

A L ( k )  = ail cos(kxo) + ai2 sin(kxo), 

the equations of motion corresponding to equations (3.6) and (3 .66)  are 

(3.15) 

Comparing equation (3.15) with equation (3.66) and using the solution (3 .6d )  we 
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obtain as the solution for the impedance defined in equation (3.5) 

64 TG iw 
144c2 (w +ie)'- k2c2' (Z?" &))-I = - (e  'n 'Al (k))' (3.16) 

It is almost superfluous to say that [ (w  +ie)'- k2c2]-' is the Fourier transform of a 
retarded Green function, which, of course, is a typical classical function in contrast, for 
example, to the Feynman propagator which is fundamental in quantum mechanics. Its 
Fourier transform would look like ( w 2 -  k2c2 +ie)-l. 

For the total effect of all possible gravitational waves? we get 

(3.17) 

where use has been made of the identity 

i.rr _- ( S  (W - kc) - S (W + kc)), 
1 1 

lim ~ + o ( w + i e ) ~ - k  2 c 2 =  w2-k2c2 2kc 

the definition of A l ( k )  and the relation 

whereby d R =  d3k/k2 dk. 
By comparing the interaction terms in equations (3.1) and (3.14) and considering 

equation (3.13) and the definition of q'rzf), we obtain with the help of equation (3.4) and 
the identification Q = d2(3px2)/dt2 from equation (3.7) the relation 

m 

Re(wZ,)-'[l +2(ePhw - l)-'] dw. (3.18) 

After averaging over all directions and polarisation states of the wave field hii and using 
equation (3.17) and the definition of E ( @ ,  p )  in 8 2, we find 

3 2 G  
T C  0 

(hiihi') = - 7 I E ( w ,  p )  dw. (3.19) 

Equation (3.19) is in complete agreement with equation (2.17). 
If we insert (3.17) and d2(3px2)/dt2= Q into equations ( 3 . 8 ~ )  and (3.86) we arrive, 

with some trivial transformations, in the limit p + 00 at the same quantum-mechanical 
quadrupole radiation damping formulae as in the papers of Schafer and Dehnen 
(1980a, b). The generalised thermal formulae follow immediately from equations 
(3.8). 

t T h e  appearance of S functions in the following keeps us from running into contradictions with the 
quadrupole approximation. 
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4. Discussion 

Our basic result follows from the identity of formulae (2.17) and (3.19), which are valid 
quantum mechanically and classically (more precisely, in the classical limit; but this 
limit is performed here at a glance (look at E ( w ,  @))-far more immediately than in the 
radiation formulae (3.8)), namely, the dissipative parts in 9 2 which are caused by the 
classical reaction force (2.10) can also be interpreted as being caused by the vacuum 
field fluctuations of the gravitational wave field because Re(Z,)-l has its origin in these 
fluctuations, as can be easily seen from equation (3.4) (take the limit @ + CO) or equation 
(3.17) (state density of the vacuum gravitational field is proportional to w ’ / c ’ ) .  
Contrary to this, we find a difference between the reactances following from equations 
(2.13) and (3.17). Whereas from equation (2.13) we get a finite reactance, that 
following from (3.17) is infinite. The reason is that an infinite self-energy part which is 
present in equation (3.17) is omitted in equation (2.13) from the beginning. All these 
results have their analogies in the electromagnetic dipole approximation case (e.g. 
equation (3.17) without the factor G / 4 5 c 2 ) ,  which can be found in the papers by Callen 
and Welton (1951) and Feynman and Vernon (1963). However, what the calculations 
for the gravitational field, given in this paper, make especially interesting is the fact that 
with the identity of equations (2.17) and (3.19) we have proven a correctness for the 
quadrupole radiation-reaction force because the calculations which we have performed 
in 9 3 do not suffer from the drawbacks of a matched or singular asymptotic expansion 
by which Misner et a1 (1973) obtained their radiation-reaction force. Beyond this, the 
influence functional approach of 9 3 makes a clear cut between finite damping and 
infinite self-energy terms (real and imaginary parts of some complex quantity; see also 
Schafer and Dehnen (1980b)), so that the self-energy problem must not be settled-and 
it is indeed not settled-to obtain reliable expressions for the damping in our approxi- 
mation. 
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